ACCELERATOR PREPARATIONS FOR MUON G-2 EXPERIMENT AT FERMILAB

MIKE SYPHERS

MICHIGAN STATE
UNIVERSITY

OUTLINE:

8 GEV PROTON ECONOMICS AT FERMILAB
PROTON TRANSPORT AND BUNCH FORMATION
TARGETING AND PION COLLECTION
MUON TRANSPORT TO STORAGE RING

RUN II OPERATION

Daily Operation

- Set up p-pbar store in Tevatron, ...
- Produce more antiprotons, and drive the neutrino program
 - time line governed by 1/15 s
 Booster cycle
- 11 Booster pulses to MI every 2.2 s
 - 9 for NuMI
 - 2 for pbar production
- Off-load pbars to Recycler ~every hour
- Spare pulses (~4) to miniBooNE
- 1 pulse to SY120 occasionally...

POST RUN II

Following Tevatron Run II...

to Minnesota: MINOS, NOvA

to South Dakota: LBNE

 On-going program of long baseline neutrino experiments

POST RUN II

- NOvA is major program for Main Injector beam -- up to 700 kW
- MicroBooNE, also approved, will utilize existing beam line used for miniBooNE
- In addition, following Collider
 Operation, Antiproton Source
 becomes available for other uses
 - Already proposed for use in Muon-to-Electron Conversion Experiment (Mu2e)
 - Time between Run II ending and Mu2e start-up provides for early mounting of New g-2 experiment

NOVA / ANU AND PROTON PLAN

- To meet the needs of the neutrino program utilizing the Main Injector, FNAL successfully completed the Proton Plan project and is following through with the Accelerator and NuMI Upgrades project (ANU)
 - Proton Plan -- updated hardware in the Booster synchrotron to allow higher beam repetition rate
 -- up to 9 Hz average rate
 - ANU -- upgrading Main Injector and Recycler to allow for higher beam throughput in both synchrotrons -- brings MI to 700 kW beam power

PROTON THROUGHPUT

- The 8 GeV Booster magnet system operates at a 15 Hz rate; however, beam throughput presently limited to ave. of ~9.5 Hz due to RF system components; runs at ~7 Hz for reliability during Run II; continuing improvements toward full 15 Hz capability.
- For today's Antiproton production and NuMI/MINOS neutrino experiment, only about 5 Hz required from Booster; spare cycles presently used to provide beam to miniBooNE (1-2 Hz, ave.).
- The NOvA neutrino experiment requires beam from Booster at average rate of about 9 Hz (hence, the Proton Plan upgrades).
- Thus, ~9 Hz for NOvA, and up to as much as ~6 Hz available for other programs at 8.9 GeV/c.

PROTON THROUGHPUT

- With present Booster running conditions, at ~4 Tp/pulse,
 - $\sim 1 \, \text{Hz} <==> 4 \, \text{Tp/s} <==> \sim 0.8 \times 10^{20} \, \text{POT/yr}$
 - Program requests are ~18x10²⁰ POT over about 6-7 years
 - thus, need an average rate of ~3+ Hz, beyond the 9 Hz for NOvA

Experiment	Total Beam Request
MicroBooNE	$6.7 \times 10^{20} \text{ POT}$
g-2	$4.0 \times 10^{20} \text{ POT}$
Mu2e	$7.2 \times 10^{20} \text{ POT}$

• While a 15 Hz Booster is ultimate goal, the extra 6 Hz this would provide is twice that which is needed to meet the goals of these three requests.

BOOSTER 8 GEV PROGRAM

- MicroBooNE takes beam directly from Booster through its own line
- New g-2 experiment uses antiproton rings as a pion decay channel, tuned to momentum of 3.1 GeV/c
- Mu2e will also use antiproton rings, tuned to 8.9 GeV/c
- These two experiments can share certain infrastructure and beam lines
- Switching between g-2 and Mu2e experiments is mutually beneficial, allowing these precision experiments to perform analysis and work on systematic errors
 - switch-time ~ 2-4 weeks, max.;
 maybe much less

THE G-2 BASELINE PROPOSAL

- New g-2 operates "per Booster cycle" (1/15th of sec.)
 - send Booster pulse to the Recycler
 - form into 4 bunches -- takes about 30 ms to perform
 - transfer one-at-a-time to g-2 Ring, every 12 ms; all occurs within one Booster cycle (details in back-up slides)
 - Note: bunches ~30 ns (rms) in length, ~ 10¹² each
- Proposal is to deliver beam to target on 6 Booster cycles, every NOvA cycle (1.333 s)
 - thus, average rate is 4.5 Hz -- could meet requested POT in 1 year, though requesting 2; thus, conservatism built in

G-2 PROPOSED OPERATIONAL SCENARIO

 Target at AP0 target hall; use pbar rings as 1-pass "decay channel" for pions; accumulate muons in g-2 ring

FNAL PLAN--BOOSTER TO RECYCLER

- Use same transfer into the Recycler as NOvA
- Allow beam to circulate, and form into bunches, prepare for extraction

FNAL PLAN--RECYCLER

- To control rate-dependent systematics, need to re-bunch each Booster batch into 4 bunches in the Recycler, 400 ns spacing
 - → implies average rate of ~18 Hz into exp., compared to 4.5 Hz at BNL E821
- Need to move existing 2.5 and 5.0 MHz RF systems from MI to Recycler, possibly need to increase voltage by 10-30%
- Extract bunch every 12 ms

FNAL PLAN--RECYCLER

- To control rate-dependent systematics, need to re-bunch each Booster batch into 4 bunches in the Recycler, 400 ns spacing
 - → implies average rate of ~18 Hz into exp., compared to 4.5 Hz at BNL E821
- Need to move existing 2.5 and 5.0 MHz RF systems from MI to Recycler, possibly need to increase voltage by 10-30%
- Extract bunch every 12 ms

FNAL PLAN--EXTRACTION TO AP1

- Very similar to NOvA injection line
- Extraction hardware necessary, also, for Mu2e
- Connects Recycler to beam lines leading toward the 8 GeV storage rings
 - preliminary optics design exists, mechanical layout being drawn, tunnel interferences being checked
- Requires a kicker to eject bunch every 12 ms
 - Average rate of 18 Hz
 - Rise time 180 ns, flat top 50 ns, back down in 5 μs, ready to kick again in 12 ms
 - similar components to kicker required for Mu2e; should be able to share much of the hardware
- Remove today's aperture restrictions to handle the 25 kW, 8 GeV beam

FNAL PLAN--APO TARGET STATION

(Huhr, Leveling, Mokhov, Morgan, Nagaslaev, Striganov, Werkama, Wolff)

- Plan A: Use conventional rad-hard quads
 - Solution used in BNL E821
- Plan B: Re-use current target & Li lens (used for pbars)
 - Have to evaluate if Li lens can operate at higher rate with reduced current
- Also looking at a multi-turn, DC PMAG design

FNAL PLAN--PION DECAY LINE

(J. Johnstone)

- Critical to the experiment is an 800 m or longer decay line $(\pi^+-->\mu^+)$
 - much longer than BNL decay line, providing much purer muon beam and much reduced pion backgrounds
 - Plan to use AP2 --> Debuncher --> AP3
 - New connection DEB-->AP3
 - Denser quad spacing in AP2/AP3

FNAL PLAN--NEW TUNNEL TO SURFACE BUILDING

ACCELERATOR SUMMARY

- In NOvA era, have cycles available to run 8 GeV program from Fermilab Booster which can serve microBooNE, g-2, and Mu2e
- g-2 operates on a Booster cycle time, as does microBooNE; no physical interference, thus can run together -- Program Planning decides sharing of Booster cycles
- g-2 can start taking data 1-2 years before Mu2e; if necessary the two can operate in a "leap-frog" fashion; each takes several weeks/months of running; will take only days or weeks (<4) to switch between them (not months)
- two independent teams have analyzed the accelerator portion of the g-2 proposal, its feasibility and cost estimate -- the estimated costs agreed to within 10%
- strong accelerator team has gathered to put forth viable path for g-2 at Fermilab

G-2 EXPERIMENT BUILDING

proposed siting:

- New building
- New beam line from AP0 target hall
- E821 magnet, etc.

BACK-UPS

NUMI/NOVA, AFTER RUN II

NOvA project and associated accelerator upgrades anticipate

using 12 Booster cycles per 1.333 s MI cycle

- Thus, of the 20 15-Hz Booster cycles per NOvA cycle, leaves up to 8 Booster cycles for "other program(s)"
- Both Mu2e and New g-2 propose using 6 of these cycles
 - average pulse rate would be 4.5 Hz, at 4 Tp/pulse --> 18 Tp/s

SIMULATIONS*

*C. Bhat and J. MacLachlan

ROTATE INTO 4 BUNCHES

MOMENTUM SPREAD VS. TIME

MOMENTUM SPREAD VS. TIME

MOMENTUM SPREAD VS. TIME

- Direct Feed from Booster for Mu2e; g-2 still fed from Recycler
- Multiple turns in the storage rings provide long pion decay path, very high muon beam purity
- Beam for both experiments circulates in same direction in rings -- easier to switch running configuration
- Can share much of external beam line

- Direct Feed from Booster for Mu2e; g-2 still fed from Recycler
- Multiple turns in the storage rings provide long pion decay path, very high muon beam purity
- Beam for both experiments circulates in same direction in rings -- easier to switch running configuration
- Can share much of external beam line

- Direct Feed from Booster for Mu2e; g-2 still fed from Recycler
- Multiple turns in the storage rings provide long pion decay path, very high muon beam purity
- Beam for both experiments circulates in same direction in rings -- easier to switch running configuration
- Can share much of external beam line

- Direct Feed from Booster for Mu2e; g-2 still fed from Recycler
- Multiple turns in the storage rings provide long pion decay path, very high muon beam purity
- Beam for both experiments circulates in same direction in rings -- easier to switch running configuration
- Can share much of external beam line

- Direct Feed from Booster for Mu2e; g-2 still fed from Recycler
- Multiple turns in the storage rings provide long pion decay path, very high muon beam purity
- Beam for both experiments circulates in same direction in rings -- easier to switch running configuration
- Can share much of external beam line

SOME REFERENCES

- J. Reid, R. Ducar, "Booster RF Repetition Rate Limit," Beams-doc-2883.
- New g-2 Collaboration, "The New (g-2) Experiment: A Proposal to Measure the Muon Anomalous Magnetic Moment to ±0.14 ppm Precision," FERMILAB-PROPOSAL-0989 (April 2010).
- C. Ankenbrandt, et al., "Preparation of Accelerator Complex for Muon Physics Experiments at Fermilab," Beams-doc-3220.
- M.J. Syphers, et al., "Preparations for Muon Experiments at Fermilab," PAC09, FERMILAB-CONF-09-153-AD.
- M.J. Syphers, "Accelerator Preparations for Muon Physics Experiments at Fermilab," DPF09, FERMILAB-CONF-09-509-AD.